Recycling options for PV panels, batteries could drive circular economy, says NREL

Share

From pv magazine USA

NREL researchers have reviewed more than 3,000 scientific publications on the life cycles of the most common solar and lithium-ion battery technologies. They have found that alternatives to recycling could help to build an effective circular economy for PV and battery technologies.

The review does not dismiss recycling, but it promotes other less-explored aspects of manufacturing and hardware usage. The researchers said the emphasis on recycling, while valuable, may overlook the challenges and opportunities that research into other strategies could reveal.

“If you can keep them as a working product for longer, that’s better than deconstructing it all the way down to the elements that occurs during recycling,” said Garvin Heath, senior environmental scientist at NREL. “And when a product does reach the end of its life, recycling is not the only option.”

The researchers said that designing products with fewer overall materials, especially hazardous materials, will improve their environmental impacts more than recycling can. Recycling itself is also an imperfect process, as there are currently no integrated recycling processes that can recover all the materials for either technology, and existing research has focused more on lab-scale methods, rather than commercial-scale approaches.

“People often summarize the product life cycle as ‘take, make, waste.’” Heath said. “Recycling has received a lot of attention because it addresses the waste part, but there are ways to support a circular economy in the take part and the make part, too.”

Recently, the Department of Energy (DOE) announced $60 million in funding to support second-life applications for batteries once used to power EVs, as well as new processes for recycling materials back into the battery supply chain. These funding opportunities are part of the government’s strategy to bolster the US supply chain and reduce the reliance on competing nations.

The Biden Administration has also committed $3.1 billion in funding to increase American-made batteries and components, bolster domestic supply chains, create good-paying jobs, and lower costs. The plan is to support the creation of new, retrofitted, and expanded commercial facilities as well as manufacturing demonstrations, and battery recycling.While all of these initiatives support increased recycling on the commercial level, there have yet been no federally funded initiatives to lower materials’ usage in PV and storage applications, although such conclusions could be reached by organizations funded by either of these announcements.

In September 2021, NREL scientists published research that describes how to motivate the market first to reuse solar panels, and then recycle them by guiding national industrial policy to create a financially viable end-of-life solar panel industry.

The research was published in Nature Energy and offers a real number for policy makers to consider: a $10 to 18 per panel subsidy to pay for recycling at the end of the panel’s life.

The researchers’ projections showed that 40% of all solar panels could be reused and recycled using subsidies equal to $18 per panel for 12 years. At that price, a profitable and sustainable solar panel recycling industry could establish itself by 2032.

The NREL research said that specific tools could be effective at minimizing the landfilling of solar panels. The first simply would ban solar panels from landfills. The second option would subsidize solar panel recycling in order to lower the effective cost of recycling solar panels as the industry scales.

Authored by

This content is protected by copyright and may not be reused. If you want to cooperate with us and would like to reuse some of our content, please contact: editors@pv-magazine.com.

Popular content

Waaree Energies approves investment in 300 MW electrolyzer, 3.5 GWh lithium-ion battery cell units
23 December 2024 Waaree Energies' board of directors has approved investment in setting up a 300 MW electrolyzer manufacturing plant and a 3.5 GWh Lithium-ion battery...