Skip to content

Longi introduces 630 W HPBC photovoltaic modules with 23.3% efficiency

The Chinese manufacturer said its new Hi-MO X6 Scientist series has a temperature coefficient of -0.28%/C and a power output ranging from 620 W to 630 W. They rely on the company’s proprietary hybrid passivated back contact (HPBC) cell technology.

Perovskite-cadmium telluride tandem solar cell based on special electrode achieves 24.2% efficiency

An Indian-US research team has fabricated a four-terminal perovskite-cadmium telluride tandem solar cell by utilizing a highly conductive and sputtered transparent electrode to increase the current density of the bottom cell. The tandem device combines a 18.3%-efficient top perovskite cell and a 19.53%-efficient cadmium telluride bottom device.

Fraunhofer ISE unveils M10 TOPCon solar cell with 24.0% efficiency

The German research institute said the new 120 µm thin solar cell could exceed 25% efficiency with the next optimization steps. The device was metalized via screen-printed contact fingers and calibrated by scientists at the Institute for Solar Energy Research Hamelin.

U.S. scientists develop air-bridge thermophotovoltaic cells with 44% efficiency

U.S. scientists have developed a thermophotovoltaic cell that could be paired with inexpensive thermal storage to provide power on demand. The indium gallium arsenide (InGaAs) thermophotovoltaic cell absorbs most of the in-band radiation to generate electricity, while serving as a nearly perfect mirror.

Lead-free inverted perovskite solar cells without transparent conducting oxides may achieve 30% efficiency

Researchers in Nigeria have proposed to build inverted perovskite solar cells exclusively with all-inorganic transport materials and a lead-free perovksite absorber. Through a series of simulations, they showed these device may achieve efficiencies over 30% with low production costs.

Hybrid hydrogen-battery system for off-grid PV-powered homes

Conceived by a Dutch research group, the proposed system is intended to store surplus renewable electricity via hydrogen generation and battery storage, with the latter being used only when hydrogen generation is not immediately available. Despite its high initial costs, the system can reportedly offer stable operation.

EPFL unveils perovskite-silicon tandem solar cell with certified efficiency of 30.9%

The tandem solar cell is based on a perovskite top cell treated with an additive known as 2,3,4,5,6-pentafluorobenzylphosphonic acid (pFBPA), which reportedly improves its power conversion efficiency and fill factor. The tandem device also integrates a bottom heterojunction silicon cell made with a 190-μm-thick, 2 Ω.cm, n-type, float-zone, shiny-etched monocrystalline wafer.

All-perovskite tandem PV cell based on carboranes hits 27.2% efficiency

Researchers have developed a thermal regulation strategy to improve the performance of inverted tin-lead perovskite tech for all-perovskite tandem solar cells. It has an efficiency of 23.4% and contributed to a 27.2% efficiency in a tandem cell while ensuring stability.

1

U.S. scientists demonstrate 25%-efficient perovskite-cadmium tandem solar cell

The researchers say the cell has a top perovskite cell with a transparent back contact made of indium zinc oxide and a commercially established cadmium telluride bottom device. They claim the champion tandem cell has the potential to reach a 30% efficiency.

Indian scientists design lead-free perovskite solar cell with 23.61% efficiency

Developed through bandgap engineering and material design, the proposed PV device relies on a tin-based perovskite material known as CsSnI3-xBrx. It can reportedly be further designed to achieve power conversion efficiencies exceeding 24%.

This website uses cookies to anonymously count visitor numbers. To find out more, please see our Data Protection Policy.

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close